GRAFENO PARA DESALACIÓN. En Experimentación, una Variante para la Ósmosis Inversa

grafeno sensible (1)Un grupo de investigadores del MIT, principalmente el profesor Jeffrey Grossman y su alumno graduado David Cohen-Tanugi, han logrado una película de óxido de grafeno, con poros de 1,8 nm, o capilares, que permitirán la desalación del agua marina a un costo muy inferior a la desalación por osmosis inversa (OI).

Science presentó,oportunamente, un amplio resumen de dicha investigación. Grosman y Cohen-Tanugi reconocen que en el laboratorio todavía no ha funcionado esa membrana-milagro. El óxido de grafeno ha funcionado en una simulación por ordenador.
Nosotros tenemos presente que hay un límite termodinámico para separar el agua salada de la potable. La presión necesaria debe superar los 300 psi o 20 atmósferas en cualquier proceso de membrana, y a eso le llamamos osmosis inversa (OI). Es la presión usada para invertir el gradiente de presión, causado por la ósmosis del agua desde una baja concentración de iones hacia una alta concentración, para lograr el equilibrio.
No hace falta ponderar la importancia de dicha investigación, si tiene éxito. Esperemos. Las aplicaciones son de enormes dimensiones, pero todavía no tenemos esa película de grafeno con poros de 1,8 nm, producida a gran escala.

 

grafeno nanoporosoImagen:Grafeno Nanoporoso

Recordemos que el grafeno es una capa de carbono de un espesor monoatómico, los átomos dispuestos en un patrón exagonal, similar al grafito. Es transparente a todo tipo de luz.

Un alótropo del carbono, con un teselado exagonal de panel de abeja. Es un hidrocarburo aromático policlínico, infinitamente alternante de anillos de solo 6 átomos de carbono. Excelente para separar gases.

Nuestra experiencia en láminas delgadas nos indica que cuanto menor es el espesor de un material, éste es más inhomogéneo y frágil. El grafeno es una excepción: la razón es que el carbono forma enlaces muy fuertes con otros átomos de carbono. En mecánica su resistencia es 200 veces mayor que la del acero, y reacciona químicamente con muchas moléculas.

En el aspecto electrónico tiene una movilidad 100 veces mayor que la del silicio. Los electrones del grafeno tendrán una velocidad muy superior a la de cualquier semiconductor, pero tienen una velocidad 100 veces menor que la de la luz. Son 70 veces más rápidos que los electrones del silicio, pero el grafeno no substituirá al silicio.

El grafito, la mina de un lápiz, es un apilamiento de capas de grafeno, unidas entre ellas por los enlaces Van der Waals, de baja intensidad. En el grafeno los electrones y huecos se desplazan como si tuvieran masa cero, como cuasipartículas. Son llamados fermiones de Dirac, que se mueven a una velocidad constante, independientemente de su energía, como ocurre con los fotones, a 1.000 km/s.

Figura 2. Red exagonal de grafeno con ondulaciones de 0,5 nm de elevación y 5 nm de longitud, que aseguran la estabilidad de la estructura cristalina.
Con un TEM (microscopio de transmisión electrónica) se irradia el óxido de grafeno con un haz electrónico enfocado, con un diámetro inferior a 2 nm, y se producen nanoporos formando un dibujo a voluntad. El arranque de carbono no causa distorsiones en la lámina de grafeno, hay estabilidad.

grafeno agua 2

 Izquierda: exfoliación de capas de grafeno a partir del grafito, para construir chips de grafeno. Derecha: monocapa de grafeno.

Para separar gases el nanoporo tendrá un diámetro algo mayor que el de la molécula gaseosa, es una membrana muy selectiva. Es un método mejor, consume menos energía, que el sistema tradicional de membrana, de un espesor de 50 nm, con destilación criogénica y una presión de 100 kPa.

La capa de moléculas de agua tiene el mismo espesor que la membrana de óxido de grafeno. Esta membrana perforada es impermeable a todas las moléculas, incluido el gas helio, excepto el agua, y el agua con etanol. Esto último nos recuerda que se podrá destilar alcohol con estas membranas: en el laboratorio se ha conseguido una mayor concentración de alcohol en el vodka, por encima del 30%, sin aplicar calor o vacío. Lograr alcohol absoluto no tiene sentido, porque es insípido.

La investigación del MIT pretende «arrinconar» la Osmosis Inversa (OI), tan usada en desalación, ávida de energía y de un costo elevado, unos 0,4 euros/m3, un precio 5 veces mayor, que extraer y procesar el agua de un rio, o pozo.

La OI usa una membrana gruesa, de un espesor mil veces superior al de la lámina de grafeno.


o inversa

La OI filtra el agua de mar, sometiéndola a gran presión, muy elevada, para que solo el agua potable atraviese la membrana, y la salmuera queda atrás. A la izquierda de la membrana vertical tenemos el agua salada, y a la derecha el agua filtrada, potable. La demanda de agua mundial sigue en aumento año tras año, en 2030 será un 30% superior a la demanda actual.

Para desalación se ha propuesto una membrana a base de nanotubos de carbono, que es grafeno arrollado, pero no hay resultados, no es posible orientar a los nanotubos.
Además, nos aseguran que la rapidez de filtración del grafeno nanoporoso es muy superior a la de OI, como un filtro de hacer café. Los grupos hidroxílicos presentes en el poro logran que la permeabilidad del agua supere, según nos dicen los informes, en varios órdenes de magnitud a la permeabilidad de la membrana convencional de OI. Los grupos hidroxílicos repelen los iones Cl-.

Los poros del grafeno de Grosman y Cohen-Tanugi tienen un diámetro de 1,8 nm. Si fueran mayores pasarían la membrana las ClNa, y otros átomos del agua salada, y si reducimos el diámetro a solo 0,7 nm, las moléculas de H2O no podrían pasar. La presión necesaria para repeler las ClNa, en teoría, es pequeña. Si el grafeno tiene poros mayores servirá para otras aplicaciones, por ej.: Separar de un líquido el ADN, o ciertos gases. Practicar poros parece que será económico, si apilamos varias películas de óxido de grafeno.

Determinar el diámetro óptimo del poro lo han conseguido con simulación molecular dinámica de ordenador.El MIT dispone de un Centro de Cálculo muy potente, y han contado además con National Energy Research Scientific Computing Center. Durante el verano 2014 experimentarán con prototipos, y podremos comprobar si la práctica coincide con la teoría.

La siguiente etapa es la fabricación a gran escala, que también dará sorpresas: cómo lograr los poros de 1,8 nm en la industria. La fabricación de chips actual admite fáciles tolerancias, no se puede comparar con el grafeno. El agua crea el mayor problema mundial, y vale la pena hacer un gran esfuerzo para superarlo.

Se trata de lograr agua potable a un precio de sólo 0,02 euros/m3. Ahora nos cuesta unos 0,4 euros/m3. La presión necesaria en la desaladora la conoceremos, cuando la membrana funcione en el laboratorio.

Pascual Bolufer
Referencias

Bor, Y. Graphene supercapacitor breaks storage record. Physics World April 2013.
Borg, Ch. Surrey wins EU funding for supercapacitor research, University of Surrey., 2012.
Collins.G. Graphene supercapacitor holds promise for portable electronics. UCLA April 2013.
Donaldson, L. Europe backs grapheme research with 1 billion euros. Physics World March 2013.
Phaedon, A. Graphene synthesis and applications. Materials Today, March 2012, 88. 108.
Scuseria, J. Electronik structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748- 2006.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *