Diariodeciencias.com.ar
  • Tapa
  • Entre Laboratorios y Gabinetes
  • El Redactor Agroindustrial
  • Alimentos y Procesos
  • Energias Nuevas
  • Ingeniería Mundial
  • Recomendados
    • Huerta Urbana
    • La Revista del Riego
    • Medio Ambiente
    • Nano World
    • Electromóviles
    • Noticias
    • Forestal Mundial
    • Parques Industriales
    • Salud y Control
  • .

ENERGÍAS NUEVAS. La Anguila Eléctrica Inspira la Energía Biocompatible. El «Pliegue de Mapa de Mihura». Univ. de Michigan

1, Energias Nuevas | 15 diciembre, 2017 2:43

La anguila eléctrica inspira una nueva fuente de energía biocompatible. – Científicos de la Universidad de Michigan han creado un sistema con hidrogeles que imita a las células de la anguila eléctrica encargadas de producir las descargas. El avance se podría aplicar para generar energía en robots blandos y en implantes dentro del ser humano.

SINC | | 13 diciembre 2017

 

La integración de la tecnología dentro de organismos vivos requiere fuentes energéticas que sean biocompatibles, flexibles y capaces de aprovechar la energía química del interior de los sistemas biológicos. Las baterías convencionales no se diseñan pensando en estos criterios, pero la naturaleza sí ofrece algunos ejemplos.

Se ha creado un sistema con gotas de hidrogel que imita al de las células de la anguila eléctrica encargadas de las descargas 

Uno de ellos es la anguila eléctrica (Electrophorus electricus), capaz de generar diferencias de potencial de hasta 600 voltios y corrientes de 1 amperio, con los que logra aturdir a sus presas. Su secreto son los electrocitos, unas células especializadas con forma de disco que se apilan para producir grandes descargas.

Ahora, un equipo internacional de investigadores liderado desde la Universidad de Michigan (EE UU) ha creado un sistema a base de gotas de hidrogel, generadas por impresión 3D sobre un sustrato plástico, que imitan el funcionamiento de los electrocitos.

‘Órgano’ eléctrico artificial inspirado en el de las anguilas. Con una impresora 3D se depositan matrices de geles sobre dos sustratos de plástico. En uno se ponen geles alternos de alta salinidad y baja salinidad (rojos y azules, respectivamente), y en el otro, los geles selectivos de cationes y aniones (verdes y amarillos).

Cuando se superponen, se conectan para formar un circuito de 612 células de gel que produce hasta 110 voltios. / Thomas Schroeder y Anirvan Guha

Después, el control de la descarga se realiza mediante un proceso de plegado parecido al de la papiroflexia. En concreto, mediante el llamado pliegue de mapa de Miura (inventado por el astrofísico japonés Koryo Miura), un tipo de doblez utilizado para desplegar los paneles solares de los satélites.

“Aquí presentamos un concepto de energía, inspirado en el de las anguilas, que usa gradientes de iones entre diminutos compartimentos de hidrogel de poliacrilamida delimitados por membranas selectivas de cationes y aniones”, explican los autores en su estudio, publicado esta semana en la revista Nature.

Morfología y mecanismo de acción del órgano eléctrico de la anguila y el ‘órgano’ eléctrico artificial creado por los investigadores. / Michael Mayer et al./Nature
Sobre un primer sustrato se deposita una matriz de gotas de gel de forma alterna, unas con alta salinidad y otras con baja salinidad; y se pone otra matriz con los geles selectivos de aniones y cationes sobre un segundo sustrato. Cuando se superponen, se conectan para formar un circuito plegado que genera hasta 110 voltios.

 

Sistema blando, flexible y biocompatible

“A diferencia de las baterías típicas, estos sistemas son blandos, flexibles, transparentes y potencialmente biocompatibles”, destaca el autor principal del trabajo, Michael Mayer, asociado a la Universidad de Michigan y también biofísico en la Universidad de Friburgo (Suiza).

Las características de este producto apuntan que los futuros órganos eléctricos artificiales, cuando estén plenamente desarrollados, se podrán aplicar en robots blandos, así como en la activación de implantes de próxima generación como marcapasos, biosensores avanzados o dispositivos protésicos en sistemas híbridos vivos y no vivos.

“Los órganos eléctricos de las anguilas son increíblemente sofisticados, mucho mejores para generar energía que este sistema”, reconoce Mayer, “pero lo importante aquí ha sido poder replicar los conceptos básicos del proceso».

Los geles se ponen en contacto mediante un plegado de Miura. / Thomas Schroeder and Anirvan Guha

 

 

 

 

Referencia bibliográfica:

Michael Mayer et al. “An electric-eel-inspired soft power source from stacked hydrogels”. Nature, 13 de diciembre de 2017. Doi: 10.1038/nature24670.

  • Tweet This!Tweet This
  • Share on FacebookShare on Facebook
  • Digg it!Digg This
  • Add to Delicious!Save to delicious
  • Stumble itStumble it
  • Subscribe by RSSRSS Feed

Escriba un comentario

Haz clic aquí para cancelar la respuesta.

    multip3
    multip2
    multip1

    Las energías renovables del futuro

    https://youtu.be/629-TjylVN0

    por ACCIONA

    multiradio1
    multira2
    multiradio4
    multiradio3
    multiradio1

    Nuevas energías

    Energía solar
    Energía solar + agua
    Niobio
    Niobio
    Boom fotovoltaico
    Boom fotovoltaico
Copyright © 2003 -2023 — Diariodeciencias.com.ar. All Rights Reserved.
Laprida 1253 - 1045 Buenos Aires Argentina - DCA Editores